
  

s1

l1

s2

t2

C => yC <= 1

t1

C <= 1

P Q

{h|C=[]} P {h|C = <C,1>,<C,1>}

{h|C=[]} Q {h|C = <C,y>}

{h|C=[]} P||Q {h|C = <C,1>,<C,1> /\ h|C = <C,y>}

{h|C=[]} P||Q {false}

These slides illustrate some limitations of the compositional

Method. Here we can prove that False is true in the

final state, but that’s ok: this program won’t terminate

anyway.



  

s1

t1

s2

t2

C => x C => yC <= 1C <= 1

P Q

{true} P || Q {x = 1 \/ y = 1}

Any annotation we put here
Must be established by the input transition

h|C =<C,1> \/
h|C =<C,x>

h|C =<C,1> \/
h|C =<C,y>

This example illustrates why the compositional method

needs unidirectional channels: there’s no way to prove

{true} P||Q {x=1 \/ y =1}

The method is incomplete for bidirectional channels.



  

s1

l1

s2

t2

C => yC <= 1

t1

C <= 1

P Q

s2

t2

C => z

R

Here we can say that
the history has length 2

Here we can say that
the history has length 1

This example shows why the proof method

is unsound for channels between more than

two parties.


	Slide 1
	Slide 2
	Slide 3

